TWC: Small: Empirical Evaluation of the Usability and

Security Implications of Application Programming Interface Design

Pls: Brad A. Myersl, Sam Weber?2, and Robert Seacord?

Contributing researchers: Michael Coblenz3, David Keaton?, Forrest J. Shull?, Joshua Sunshine®, Robert Schiela?

IHuman Computer Interaction Institute 2CERT / SEI

Carnegie Mellon University

3Computer Science Department 4SEl

e} | =

Carnegie Mellon University

SInstitute for Software Research

9/1/2014 - 8/31/2017

OVERVIEW
* Develop and empirically test concrete and
actionable API design principles that lead to more
secure code
* Investigate the tradeoffs between security and
usability in language and APl design
0 When better usability leads to more secure
code (e.g. [Wang]), and when it leads to less
secure code (e.g., [Ellis][Stylos])

0 Can we design languages and APIs that help
programmers write secure code?

* Threat model: well-meaning and benign
programmers, but arbitrarily malicious attackers
of programmers’ code

* Address all APls, not just ones for security
0 Security impact when programmers are

thinking of functionality, not security

¢ |Initial focus on two areas:

0 Competing C and C++ parallelism language
extensions

0 Using immutability to reduce the likelihood of
vulnerabilities, especially in concurrent code

SECURITY / USABILITY TRADEOFFS

Prior empirical work has shown that guidelines for
more secure code recommend coding styles that
are less preferred / less usable by developers

O Factory pattern is 2.1 to 5.3 times slower [Ellis]
0 Create-Set-Call preferred [Stylos]

References

METHODOLOGIES

e Programmers are people too — use proven HCl methods
Investigate initial learnability
0 How understandable?
0 Fosters exploration during learning?
Investigate effectiveness for novice and experienced users
0 Error-proneness when coding — avoid security flaws
0 Ability to find security issues in existing code
“Contextual Inquiry” [Beyer] field studies
0 Watch programmers working on their actual tasks
looking for breakdowns and difficulties
0 Understand issues with today’s APIs and language
features with respect to security and usability
Corpus studies
0 Look for evidence of usage and problems
0 Change logs, bug databases, analysis of code
Expert interviews
0 Opinions about what is important to study further
Surveys
0 How widespread are the identified issues?
Classroom studies
Lab studies
0 Controlled A vs B with different versions of API
0 “Natural programming” to elicit expectations
“Natural
Progremming™ Tesk1 Tesk2

Group A i Style A Style B (interview)
Design own style = =
Gmoup B Style B StyleA (interview)

| Time .>

L4

[Beyer] Beyer, H. and Holtzblatt, K., Contextual Design: Defining Custom-Centered Systems. 1998, San Francisco, CA: Morgan Kaufmann Publishers, Inc.
[Bloch] J. Bloch. Effective Java Programming Language Guide. Mountain View, CA, Sun Microsystems, 2001.
[Ellis] Ellis, B., Stylos, J., and Myers, B. “The Factory Pattern in API Design: A Usability Evaluation,” in International Conference on Software Engineering (ICSE'2007). Minneapolis, MN:

pp. 302-312.

[Oracle] Oracle Corp. Secure Coding Guidelines for the Java Programming Language, version 4.0. htt
[Stylos] Stylos, J. and Clarke, S. “Usability Implications of Requiring Parameters in Objects' Constructors,” in International Conference on Software Engineering (ICSE'2007). Minneapolis,

MN: pp. 529-539.

://www.oracle.com/technetwork/java/seccodeguide-139067.html

[Wang] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans, and Yuri Gurevich. 2013. Explicating SDKs: uncovering assumptions underlying secure authentication and
authorization. In Proceedings of the 22nd USENIX conference on Security (SEC'13). USENIX Association, Berkeley, CA, USA, 399-414.

& SaTCPI’15

C/C++ Parallelism Language Extensions

¢ OpenMP and Cilk Plus are being considered by
ISO/IEC JTC1/SC22/WG14 CPLEX standards
committee

¢ What are the Usability and Security issues with
each?

Immutability

¢ Experts and books recommend immutable objects
to reduce errors, especially in concurrent code
(e.g., [Bloch][Oracle])

¢ However, a study found the create-set-call pattern
is more usable for learnability than required
parameters in constructors [Stylos]

INITIAL WORK

¢ The approach taken by CPLEX experts suggests
reductions as a good area for study
0 Especially avoiding race conditions
0 Homeworks using OpenMP and Cilk Plus
planned for Spring graduate class on security
O Study learnability and effectiveness of each API
by students
¢ Taxonomy of immutability features in Java, C, C++,
Objective-C, etc.
o const, final, readonly
0 Reference vs. value immutability
0 But programmers want “logical immutability”
= E.g., if internal cache
¢ Examined commit logs in code repositories and
found that users wanted logical immutability, but
languages only provide bitwise immutability

@ | === Software Engineering Institute | Carnegie Melion University.

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by National Science Foundation award 1423054 and by
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center sponsored by the United States Department of
Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-1S” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external and/or
commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0002023

