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OVERVIEW
* Develop and empirically test concrete and
actionable API design principles that lead to more
secure code
* Investigate the tradeoffs between security and
usability in language and APl design
0 When better usability leads to more secure
code (e.g. [Wang]), and when it leads to less
secure code (e.g., [Ellis][Stylos])

0 Can we design languages and APIs that help
programmers write secure code?

* Threat model: well-meaning and benign
programmers, but arbitrarily malicious attackers
of programmers’ code

* Address all APls, not just ones for security
0 Security impact when programmers are

thinking of functionality, not security

¢ |Initial focus on two areas:

0 Competing C and C++ parallelism language
extensions

0 Using immutability to reduce the likelihood of
vulnerabilities, especially in concurrent code

SECURITY / USABILITY TRADEOFFS

Prior empirical work has shown that guidelines for
more secure code recommend coding styles that
are less preferred / less usable by developers

O Factory pattern is 2.1 to 5.3 times slower [Ellis]
0 Create-Set-Call preferred [Stylos]
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METHODOLOGIES

e Programmers are people too — use proven HCl methods
Investigate initial learnability
0 How understandable?
0 Fosters exploration during learning?
Investigate effectiveness for novice and experienced users
0 Error-proneness when coding — avoid security flaws
0 Ability to find security issues in existing code
“Contextual Inquiry” [Beyer] field studies
0 Watch programmers working on their actual tasks
looking for breakdowns and difficulties
0 Understand issues with today’s APIs and language
features with respect to security and usability
Corpus studies
0 Look for evidence of usage and problems
0 Change logs, bug databases, analysis of code
Expert interviews
0 Opinions about what is important to study further
Surveys
0 How widespread are the identified issues?
Classroom studies
Lab studies
0 Controlled A vs B with different versions of API
0 “Natural programming” to elicit expectations
“Natural
Progremming™ Tesk1 Tesk2

Group A i Style A Style B (interview)
Design own style = =
Gmoup B Style B StyleA (interview)
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C/C++ Parallelism Language Extensions

¢ OpenMP and Cilk Plus are being considered by
ISO/IEC JTC1/SC22/WG14 CPLEX standards
committee

¢ What are the Usability and Security issues with
each?

Immutability

¢ Experts and books recommend immutable objects
to reduce errors, especially in concurrent code
(e.g., [Bloch][Oracle])

¢ However, a study found the create-set-call pattern
is more usable for learnability than required
parameters in constructors [Stylos]

INITIAL WORK

¢ The approach taken by CPLEX experts suggests
reductions as a good area for study
0 Especially avoiding race conditions
0 Homeworks using OpenMP and Cilk Plus
planned for Spring graduate class on security
O Study learnability and effectiveness of each API
by students
¢ Taxonomy of immutability features in Java, C, C++,
Objective-C, etc.
o const, final, readonly
0 Reference vs. value immutability
0 But programmers want “logical immutability”
= E.g., if internal cache
¢ Examined commit logs in code repositories and
found that users wanted logical immutability, but
languages only provide bitwise immutability
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